3rd edition Unmet challenges in high risk hematological malignancies: from benchside to clinical practice

Turin, September 21-22, 2023 Starhotels Majestic *Scientific board:* **Marco Ladetto** (Alessandria) **Umberto Vitolo** (Candiolo-TO)

IIIIII

High-risk cytogenetic AML

Pau Montesinos Hospital La Fe, València, Spain

Turin, September 21-22, 2023 Starhotels Majestic

Disclosures of Pau Montesinos

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie	х		х		х	х	
Jazz pharma	x		x		x	x	
Daiichi Sankyo	x		x		x	x	
BMS	x		x		x	x	
Pfizer	x		х		x	x	

Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel

HE-ES-2100380 FLT3-ITD allelic ratio defined as: low, <0.5; high, ≥0.5. ¶These markers should not be used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes

European LeukemiaNet 2022. Validation by PETHEMA group

European LeukemiaNet 2022 refinement → Very adverse group

European LeukemiaNet 2022. The issue of MDS-genes

sAML: SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2, RUNX1, SETBP1

	Risk Category ^b	Genetic Abnormality
European LeukemiaNet Döhner H <i>et al.,</i> Blood (2022) 140 (12): 1345–1377.	Adverse	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged^g t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,^h monosomal karyotypeⁱ Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2^j Mutated TP53^k

European LeukemiaNet 2022. Validation by PETHEMA group

Genes MDS: ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 Y ZRSR2

Claudia Sargas, Blood Cancer Journal, 2023

Use of biomarkers to refine risk-adapted algorithms

"One-size-fits-all" therapy: AML as a single entity

Tailored therapy—Risk-adapted therapy: Distinct subtypes of AML (prognostic factors)

Targeted therapy: Acknowledgment of molecular targets

Boxplot diagram of the complete remission (CR) rate of the different subgroups of AML with poor prognosis

Juan Eduardo Megías-Vericat, Expert Review of Clinical Pharmacology, 2018

Boxplot diagram of the median overall survival (OS) rate of the different subgroups of AML with poor prognosis

Juan Eduardo Megías-Vericat, Expert Review of Clinical Pharmacology, 2018

Role of allogeneic stem cell transplantation in acute myeloid leukemia

Koreth, JAMA 2009

PETHEMA LMA2007/2010 protocol

GIMEMA AML1310 trial – Schedule

Trends in allogeneic HCT in the US by recipient age*

≤<60 Years ≤60-69 Years ≥70 Years</p>

*Transplants for AML, ALL, NHL, Hodgkin Disease, Multiple Myeloma D'Souza A, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT): CIBMTR Summary Slides, 2018. Available at http://www.cibmtr.org

Randomized trial: RIC vs MAC in AML and MDS patients: Age 18-65 and comorbidity index < 4

Scott B, JCO 2017

Randomized trial: Treosulfan or busulfan plus fludarabine as RIC before allo-HSCT for older patients with AML or MDS

Beelen Lancet Hematol 2020

Strategies to control relapse in AML Maintenance vs. preemptive therapy

Phase 3 trial of 10-day decitabine versus 7+3 followed by transplantation in fit AML patients aged ≥ 60 years: HRQoL

Study design	International, open-label, Phase 3 randomized controlled trial comparing 10-day decitabine followed by HSCT versus intensive chemotherapy (7+3) followed by HSCT*
Eligibility	Age \geq 60 years; newly diagnosed AML (de novo or secondary); eligible for induction chemotherapy; ECOG PS \leq 2
Enrolment	606 patients (303 per arm); around a third were aged \geq 70 years
Clinical outcomes	<i>Presented at EHA 2022:</i> Similar survival with decitabine versus 7+3; comparable alloHSCT rates; more favorable safety profile with decitabine ¹
HRQoL	 Assessed using EORTC QLQ-C30 and its module for older patients (EORTC QLQ-ELD14), specifically based on 5 a priori-selected primary scales: physical functioning, role functioning, fatigue, pain, and illness burden
	 Assessments were performed at baseline and then short-term (2 months from randomization) and long-term (6 and 12 months)
	 For patients undergoing HSCT, HRQoL was assessed prior to the procedure and at day 100 after transplant
	 QoL deterioration was defined as any of the following: death; progression; or clinically meaningful deterioration from baseline in at least one of the primary HRQoL scales

^{*}Decitabine was administered for 10 days consecutively in cycle 1 (20 mg/m²), 10 or 5 days in subsequent cycles (depending on bone marrow blast clearance at day 28); intensive chemotherapy was daunorubicin 60 mg/m² x 3 days, cytarabine 200 mg/m² x 7 days, followed by 1–3 additional chemotherapy cycles. AML, acute myeloid leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; EHA, European Hematology Association; EORTC, European Organisation for Research and Treatment of Cancer; HRQoL, health-related QoL; HSCT, hematopoietic stem cell transplant; QLQ, QoL questionnaire; QoL, quality of life.

1. Lübbert M et al. HemaSphere 2022;6:26–27.

Efficace F et al., ASH 2022; abstract 535 (oral presentation)

QUAZAR AML-001: Study design and key eligibility criteria

International, multicenter, PBO-controlled, double-blind, randomized, phase 3 trial

21

QUAZAR: Overall survival by number of consolidations

- OS was also prolonged with Oral-AZA within each consolidation cohort
- Median OS ranged from 21.0–28.6 months in the Oral-AZA arm and 10.9–17.6 months in the placebo arm

OS estimates were derived using Kaplan-Meier methods and compared for Oral-AZA vs. placebo using log-rank test. Hazard ratios (HRs) and 95% CIs were generated using a stratified Cox proportional hazards model.

95%CI, 95% confidence interval; AZA, azacitidine; HR, hazard ratio; No., number; OS, overall survival; pts, patients.

Results of VIALE-A : Azacitidine +/- Venetoclax

Months

Long-term follow-up from VIALE-A: Overall survival

Median OS, months (95%

CI)

14.7 (12.1–18.7)

9.8 (7.4-12.7)

Pbo+Aza

Ven + aza

Pbo + aza

All patients (median follow up: 43.2 months)

Patients with *IDH1/2* mutations

*Compared with HR of 0.66 at 75% OS analysis. Aza, azacitidine; CI, confidence interval; HR, hazard ratio; IDH, isocitrate dehydrogenase; OS, overall survival; pbo, placebo; ven. venetoclax.

Events / patients (%)

222/286 (77.6)

138/145 (95.2)

Real life results of HMA+VEN in high-risk Genetic AML

Reference	n	genetics	schedule	Response	Response %	mOS
Winters 2019 - Single center (USA) ¹	5	TP53+	AZA+VEN	CR/CRi	<mark>40</mark>	NA
Grenet ASH 2021 - Multicentric (USA) ²	57	TP53+	HMA+VEN	CR/CRi	<mark>48</mark>	<mark>6.4</mark>
Johnson EHA 2022 - Single center (USA) ³	ND (103*)	TP53+	HMA+VEN	CR/CRi	<mark>32</mark>	NA
Venugopal 2022 A - Single center (USA)⁴	53	TP53+	HMA+VEN LDAC+VEN	CR/CRi	<mark>56</mark>	<mark>6.4</mark>
Daver 2023 - Multicenter (USA)⁵	94	TP53+ or 17p deletion	HMA+VEN	NA	NA	<mark>7.6</mark>
Winters 2019 - Single center (USA) ¹	10	Unfavorable cytogenetic	AZA+VEN	CR/CRi	<mark>60</mark>	NA
De Bellis 2022 - Multicentric (Italy) ⁷	23	Adverse karyotype	HMA+VEN	CR/CRi	<mark>61</mark>	<mark>10.5</mark>
Johnson EHA 2022 - Single center (USA) ³	ND (103*)	Adverse karyotype	HMA+VEN	CR/CRi	<mark>49</mark>	NA
Lam EHA 2022 - Single center (UK) ⁸	5	Adverse risk	AZA+VEN	CR/CRi	<mark>65</mark>	NA
Gherson 2023 - Multicentric (USA) ⁹	136	Adverse ELN	HMA+VEN	NA	NA	<mark>7.9</mark>
Grenet ASH 2021 - Multicentric (USA) ²	162	Adverse ELN	HMA+VEN	CR/CRi	<mark>52</mark>	<mark>9.7</mark>
Kale ASH 2022 - Single center (USA) ¹⁰	ND (28*)	Adverse ELN	HMA+VEN	NA	NA	<mark>11.7</mark>
Vachhani 2022 - Multicenter (USA) ¹¹	65	Adverse ELN	HMA+VEN	CRc	<mark>45</mark>	NA

OS in TP53 AML in phase 3 RCT (VIALE-A & CPX351)

VENAZA

7+3 / CPX-351

Pollyea et al. Clin Cancer Res 2022 Lindsley RC, et al. ASH 2019

36

CPX-351, no mutation

7+3, no mutation

בום בוכוב.

24

_ _

OS in TP53 AML (MDACC USA)

Table: Median overall survival (95% CI) and adjusted hazard ratio by allo-SCT status						
Allo-SCT status	Overall	Cohort A	Cohort B	Cohort C		
	(N=370)	Ven+HMA	Intensive Chemo	HMA only		
		(N=94)	(N=135)	(N=141)		
No, n (%)	340 (92)	89 (95)	114 (84)	137 (97)		
Deceased, yes, n (%)	279 (82)	65 (73)	89 (78)	125 (91)		
Median OS, mos (95% CI)	7.0 (6.0, 7.8)	7.2 (5.7, 8.4)	7.3 (6.5, 9.8)	5.7 (4.2, 7.0)		
Vos. n (%)	20 (8)	5 (5)	21 (16)	4 (2)		
Deceeded was $p(0/)$	50 (8) 15 (50)	J (3)	12 (10)	4 (5)		
Median OS mas (050) CD	13 (30)	1(20)	12 (37)	2(30)		
Median OS, mos (95% CI)	33. / (13.0, 44.1)	NA (10.7, NA)	28.9 (12.8, 30.3)	43.5 (44.1, 40.9)		
Allo-SCT (yes vs no)*		aHR (95% CI)		P-value		
In overall model (Cohort A, E	3, and C)	0.4 (0	.2, 0.6)	<0.001		

*Adjusted in Cox model for baseline covariates including age at baseline, time to 1L start, number of comorbidities, TP53m/cytogenetic risk level, 17p del status, bone marrow blast percentage at baseline, secondary AML, therapy-related AML, and healthcare practice type. 1L, initial therapy; aHR, adjusted hazard ratio; allo-SCT, allogenetic stem cell transplantation; AML, acute myeloid leukemia; CI, confidence interval; HMA, hypomethylating agents; mos, months; NA, not applicable; OS, overall survival; Ven, venetoclax.

Magrolimab + Aza in Patients With MDS and AML: Response in Patients With TP53 Mutation

Outcome	MDS <i>TP53</i> Mutant (n = 12)	AML <i>TP53</i> Mutant (n = 4)
ORR, n (%)	9 (75)	3 (75)
CR, n (%)	5 (42)	2 (50)
CRi/marrow CR, n (%)	4 (33)	1 (25)
Complete cytogenetic response, n/N (%)*	4/8 (50)	3/3 (100)
MRD negativity in responders, n/N (%)	4/9 (44)	0
Median DoR, mos	NR (0.03+ to 15.1)	NR (0.03+ to 5.2+)
6-mo survival probability, %	91	100
Median follow-up, mos (range)	8.8 (1.9 to 16.9)	7 (4.2 to 12.2)

*Responders with cytogenetic abnormalities at baseline.

Phase 1/2 study of azacitidine with venetoclax and magrolimab: Frontline response and survival

- Frontline cohort, N=43 (n=33 de novo AML; n=10 secondary AML)
 - Median age: 70 years, 37% female; 91% had adverse ELN 2017 risk stratification; 65% had adverse cytogenetics*
 - *TP53^{mut}*: n=27 (63%); *TP53^{WT}*: n=16 (37%)
 - Response rates:

•

- CR: n=21/43 (49%); CR+CRi: n=31/43 (72%)
- MRD-negative best response: n=16/28 (67%)[†]

DOR (frontline de novo patients, n=33):[‡]

OS (frontline de novo patients, n=33):[‡]

*Per ELN 2017. [†]Among CR/CRi patients with longitudinally MRD-evaluable samples. [‡]Median follow-up 14.5 months. AML, acute myeloid leukemia; CR, complete remission; CRi, CR with incomplete count recovery; DOR, duration of response; ELN, European LeukemiaNet; MRD, minimal residual disease; mut, mutated; NR, not reached; OS, overall survival; WT, wild type.

Daver N et al., ASH 2022; abstract 61 (oral presentation)

Menin-KMT2A Pathway Represents a Foundational Target for Ziftomenib

- NPM1-m and KMT2A-r drive overexpression of HOXA9/MEIS1 genes, critical for transformation to AML
- KMT2A(MLL) sits upstream from major AML targets (ie, FLT3, IDH1/2, DNMT3A)
- KMT2A(MLL)-dependent genes contribute to therapeutic resistance and relapse to current SOC
- Menin inhibition down regulates HOXA9/MEIS1, leading to differentiation of leukemic blasts

